Chemical Communications

Number **16** 1990

A Controlled Balance between Ionic and Radical Pathways in Reactions of Tributyltin Hydride

John A. Murphy," Michael S. Sherburn, Julia M. Dickinson, and Chris Goodman

Department of Chemistry, University of Nottingham, University Park, Nottingham NG7 ZRD, UK

A delicate but controllable balance exists between ionic and radical pathways in the reactions of tributyltin hydride with quaternised haloalkyl pyridinium salts.

We have recently reported¹ the behaviour of a series of iodoalkylpyridinium salts such as **(la)** in the presence of tributyltin hydride and azoisobutyronitrile (AIBN) , which led to the exclusive formation of tetrahydroquinolizinium salts, *e.g.* **(2a).** The curious fact about this reaction was that it only gave the desired product in good yield and purity when a full molar equivalent of AIBN was used. We have now investigated what happens when this condition is not met and the effect of changes of substrate and report a remarkable sensitivity of the reaction to these factors. Thus, when the iodide **(la)** was treated with tributyltin hydride (1.2 equiv.) and a catalytic quantity (0.1 equiv.) of radical initiator AIBN, the spiro compound **(3a)** was formed, along with the previously observed fused product **(2a)** in a ratio of 1:2. The formation of these two products initially suggested that we were observing a reversible cyclisation2 of radical **(4),** with the *5-exo* cyclisation occurring more rapidly and the resulting bicyclic radical *(5)* being trapped by tributyltin hydride when a large concentration of this reagent was present. The ratio of $[Bu_3SnH]$: $[Bu_3Sn^}]$ would be expected to fall dramatically in the presence of large amounts of initiator and so in this case the intermediate radical *(5)* would not be trapped so efficiently and, therefore, would more frequently revert to **(4)** which could be diverted to the radical *(6),* the precursor of the observed fused product (Scheme 1). However, although this sounds like a plausible explanation for our observations, radical cyclisations onto nitrogen atoms³ are rare; this and the following experiments made us sceptical that a radical reaction was the cause of the spirocycle formation. If spiro product formation were the result of the radical process shown then the same ratio of spiro:fused products should result for bromide substrates as for iodides. However, this was not the case. When the bromide **(lb)** was heated under reflux with

tributyltin hydride (1.2 equiv.) in the presence of AIBN (0.1 equiv.) in tetrahydrofuran:acetonitrile $(1:1)$, the spiro compound **(3b)** was formed almost exlusively. Only a trace of the tetrahydroquinolizinium salt **(2b)** was detected. When the reaction was repeated under the conditions which led to clean transformation of the iodide **(la)** into **(2a)** *(i.e.* using 1.2 equiv. of AIBN), the ratio of spiro compound **(3b)** to fused product **(2b)** was 2 : 1. When the reaction was performed in the complete absence of AIBN, **(3b)** was the only product. This indicated that a non-radical process was playing an important part in determining the products. Accordingly, the tosylate **(7)** was synthesised and subjected to the same cyclisation conditions. Tosylate groups, unlike halides, are not cleaved by tributyltin radicals, and so if the cyclisation requires a carbon solventrian through product. This
aying an important
gly, the tosylate (7)
e cyclisation cond-
are not cleaved by
n requires a carbon
 $\frac{Bu_3SnH}{2}$ (3)

1069

radical then the tosvlate should not cyclise. However, cyclisation was indeedieen to give **(8)** in 51% yield [equation (l)] . This could arise by hydride delivery to the pyridinium salt to produce a dihydropyridine; the lone pair of electrons on the nitrogen of this compound could then displace the tosylate in an S_N ² reaction.

The ability of tributyltin hydride to effect hydride delivery to pyridinium rings was further shown when the butylpyridinium compound **(9)** was treated with tributyltin deuteride under these conditions. This led to isolation of the pyridinium compound **(10)** (Scheme 2). Examination of its 1H and **2H** NMR spectra showed that extensive deuterium atom substitution had occurred, principally in the α - but also in the γ positions on the ring. This is consistent with deuteride ion delivery to either of these positions to produce a dihydropyridine, which on work-up easily reoxidizes to a pyridinium salt. We also investigated the reaction of the undeuteriated butylpyridinium salt with tributyltin hydride in a sealed NMR tube. The two possible isomeric dihydropyridines were observed.

Ionic reactions of tributyltin hydride have been witnessed before,⁴ but the delicate and controllable balance seen here between an ionic reaction and a radical reaction is unique in the extensive literature of tributyltin hydride.5

We thank the SERC for support.

Received, 4th May 1990; Corn. 0101 991 G

References

- 1 J. A. Murphy and M. **S.** Sherburn, *Tetrahedron Lett.,* 1990, **31,** 1625.
- 2 B. Giese, 'Radicals in Organic Synthesis: formation of Carbon-Carbon Bonds,' Pergamon Press, Oxford, 1986, **p.** 147.
- **3** D. D. Tanner and P. **M.** Rahimi, *J. Org. Chem.,* 1979,44, 1674.
- 4 G. Palmisano, G. Lesma, **M.** Nali, **B.** Rindone, and **S.** Tollari, *Synthesis,* 1985, 1073; A. G. Davies and P. **J.** Smith, in 'Comprehensive Organometallic Chemistry,' Pergamon Press, 1982, ch. 11, pp. 586-588, eds. G. Wilkinson, F. G. A. Stone, and E. W. Abel; N.Y.M. Fung, P. de Mayo, J. H. Schauble, and A. C. Weedon, *J. Org. Chem.,* 1978, 43, 3977.
- 5 W. **P.** Neumann, *Synthesis,* 1987,665.